конфликты по управлению на конвейере

ролики дефлекторные для ленточных конвейеров

Автомобили Спецтехника. Вход и регистрация. Продажа автомобилей.

Конфликты по управлению на конвейере вес т5 транспортер фургон

Конфликты по управлению на конвейере

Привлекательность такого решения заключается в его простоте. Главный недостаток - резкое уменьшение преимуществ конвейерной обработки. В инженерных задачах примерно каждая шестая команда является командой условного перехода , поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора. Можно несколько улучшить эту ситуацию, использую схему "задержанных переходов".

При этом на стадии компиляции компилятор таким образом структурирует получаемый объектный код, чтобы сделать команды, следующие за командой перехода, действительными и полезными рис. Слот задержки заполняется независимой командой, находящейся перед командой условного перехода. Эта команда выполняется за то время, пока микропроцессор формирует истинное условие, по которому должно быть определено направление выполнения программы. Одной из основных трудностей в этом подходе является определение точного времени выполнения команды, вносимой в слот задержки.

Аппаратура должна гарантировать реальное выполнение этих команд перед выполнением собственно перехода. Более эффективными для снижения потерь от конфликтов по управлению являются методы предсказания переходов. Они призваны максимально ускорить определение адреса команды, выполняемой после команды перехода. Так как преимущества конвейерной обработки проявляются при большом числе последовательно выполненных команд, перезагрузка конвейера приводит к значительным потерям производительности.

Поэтому вопросам эффективного предсказания направления ветвления разработчики всех микропроцессоров уделяют большое внимание. Среди основных достоинств практически каждого нового микропроцессора производители анонсируют "улучшенный блок предсказания переходов".

Суть конкретных механизмов, обеспечивающих эти улучшения, как правило, не детализируется. Однако здесь все-таки можно выделить несколько основных подходов. Методы предсказания переходов делятся на статические и динамические. При использовании статических методов до выполнения программы для каждой команды условного перехода указывается направление наиболее вероятного ветвления.

Это указание делается программойкомпилятором по заложенным в ней алгоритмам. Подобный подход реализован, например, в HP PA-8x Также это может делать и сам программист по опыту выполнения аналогичных программ либо по результатам тестового выполнения программы.

Например, в системе команд микропроцессора Itanium для этого предназначена специальная команда. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется. Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы так называемое исполнение по предположению , или "спекулятивное" исполнение.

Однако так как направление перехода может быть предсказано неверно, получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры то есть для них не выполняется этап WB , а накапливаются в специальном буфере результатов. Если после формирования анализируемых признаков оказалось, что направление перехода выбрано верно, все полученные результаты переписываются из буфера по месту назначения и выполнение программы продолжается в обычном порядке.

Если направление перехода предсказано неверно, все инструкции, выбранные после перехода, помечаются, согласно интеловской терминологии, как поддельные bogus INsTRuctions. При этом буфер результатов и конвейер, содержащий команды, которые следуют за командой условного перехода и находятся на разных этапах обработки, - очищаются.

Аннулируются результаты всех уже выполненных этапов этих команд. Конвейер начинает загружаться с первой команды другой ветви программы. Следует отметить, что конфликты по управлению не исчерпываются только проблемами, связанными с командами условных переходов. Они возникают при выполнении всех команд, меняющих значение счетчика команд. Это хорошо видно из табл. Если команда i является командой такого типа например, команда безусловного перехода , то адрес перехода будет вычислен ею в такте 5, в то время как уже в такте 2 необходимо выбирать в микропроцессор следующую команду по этому адресу.

Методы динамического предсказания реализуются при выполнении программы в микропроцессоре. Они осуществляют предсказание направления переходов на основании результатов предыдущих выполнений данной команды. При использовании этих методов для команд условных переходов анализируется предыстория переходов - результаты нескольких предыдущих команд ветвления по данному адресу. В этом случае возможно определение чаще всего реализуемого направления ветвления, а также выявление чередующихся переходов.

Для команд безусловных переходов однажды вычисленный целевой адрес сохраняется в специальной памяти BTB Branch Target Buffer , откуда он извлекается сразу же при декодировании данной команды. Вы можете поддержать наш проект. Регистрация Вход. Запомнить меня. Сведения об образовательной организации. Новости Помощь О проекте. О курсе. План занятий. Экзамен экстерном Лекция 1. Лекция 2. Лекция 3. Лекция 4. Лекция 5. Лекция 6.

Лекция 7. Лекция 8. Лекция 9. Лекция Вы можете поддержать. Архитектура микропроцессоров. Национальный исследовательский ядерный университет «МИФИ». Пусть для выполнения отдельных стадий обработки требуются следующие затраты времени в некоторых условных единицах :. Оценим время выполнения одной команды и некоторой группы команд при последовательной и конвейерной обработке.

При последовательной обработке время выполнения N команд составит:. Анализ таблица Примеры длительности выполнения некоторого количества команд при последовательной и конвейерной обработке приведены в таблица Очевидно, что при достаточно длительной работе конвейера его быстродействие будет существенно превышать быстродействие, достигаемое при последовательной обработке команд. Это увеличение будет тем больше, чем меньше длительность такта конвейера и чем больше количество выполненных команд.

Сокращение длительности такта достигается, в частности, разбиением выполнения команды на большое число этапов, каждый из которых включает в себя относительно простые операции и поэтому может выполняться за короткий промежуток времени. Так, если в микропроцессоре Pentium длина конвейера составляла 5 ступеней при максимальной тактовой частоте МГц , то в Pentium-4 - уже 20 ступеней при максимальной тактовой частоте на сегодняшний день 3,4 ГГц. Значительное преимущество конвейерной обработки перед последовательной имеет место в идеальном конвейере , в котором отсутствуют конфликты и все команды выполняются друг за другом без перезагрузки конвейера.

Наличие конфликтов снижает реальную производительность конвейера по сравнению с идеальным случаем. Конфликты - это такие ситуации в конвейерной обработке, которые препятствуют выполнению очередной команды в предназначенном для нее такте. Структурные конфликты возникают в том случае, когда аппаратные средства процессора не могут поддерживать все возможные комбинации команд в режиме одновременного выполнения с совмещением.

Не полностью конвейерная структура процессора, при которой некоторые ступени отдельных команд выполняются более одного такта. Тогда диаграмма работы конвейера будет иметь вид, представленный в таблица Эту ситуацию можно было бы ликвидировать двумя способами.

Первый предполагает увеличение времени такта до такой величины, которая позволила бы все этапы любой команды выполнять за один такт. Однако при этом существенно снижается эффект конвейерной обработки, так как все этапы всех команд будут выполняться значительно дольше, в то время как обычно нескольких тактов требует выполнение лишь отдельных этапов очень небольшого количества команд. Второй способ предполагает использование таких аппаратных решений, которые позволили бы значительно снизить затраты времени на выполнение данного этапа например, использовать матричные схемы умножения.

Но это приведет к усложнению схемы процессора и невозможности реализации на этой БИС других, функционально более важных, узлов. Так как представленная в таблица Одним из типичных примеров служит конфликт из-за доступа к запоминающим устройствам. Из таблица Борьба с конфликтами такого рода проводится путем увеличения количества однотипных функциональных устройств, которые могут одновременно выполнять одни и те же или схожие функции.

Например, в современных микропроцессорах обычно разделяют кэш-память для хранения команд и кэш-память данных, а также используют многопортовую схему доступа к регистровой памяти, при которой к регистрам можно одновременно обращаться по одному каналу для записи, а по другому - для считывания информации. Конфликты из-за исполнительных устройств обычно сглаживаются введением в состав микропроцессора дополнительных блоков. Так, в микропроцессоре Pentium-4 предусмотрено 4 АЛУ для обработки целочисленных данных.

Процессоры, имеющие в своем составе более одного конвейера , называются суперскалярными. Недостатком суперскалярных микропроцессоров является необходимость синхронного продвижения команд в каждом из конвейеров. В таблица Следовательно, для обеспечения правильной работы суперскалярного микропроцессора при возникновении затора в одном из конвейеров должны приостанавливать свою работу и другие.

В противном случае может нарушиться исходный порядок завершения команд программы. Но такие приостановки существенно снижают быстродействие процессора. Разрешение этой ситуации состоит в том, чтобы дать возможность выполняться командам в одном конвейере вне зависимости от ситуации в других конвейерах. Это приводит к неупорядоченному выполнению команд. При этом команды, стоящие в программе позже, могут завершиться ранее команд, стоящих впереди.

Аппаратные средства микропроцессора должны гарантировать, что результаты выполненных команд будут записаны в приемник в том порядке, в котором команды записаны в программе. Для этого в микропроцессоре результаты этапа выполнения команды обычно сохраняются в специальном буфере восстановления последовательности команд. Запись результата очередной команды из этого буфера в приемник результата проводится лишь после того, как выполнены все предшествующие команды и записаны их результаты.

Конфликты по управлению возникают при конвейеризации команд переходов и других команд, изменяющих значение счетчика команд. Суть конфликтов этой группы наиболее удобно проиллюстрировать на примере команд условного перехода. Пусть в программе, представленной в таблица Команда i завершит свое выполнение в такте 5.

В то же время команда условного перехода уже в такте 3 должна прочитать необходимые ей признаки, чтобы правильно сформировать адрес следующей команды. Если конвейер имеет большую глубину например, 20 ступеней , то промежуток времени между формированием признака результата и тактом , где он анализируется, может быть еще большим.

В инженерных задачах примерно каждая шестая команда является командой условного перехода, поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора. Наиболее эффективным методом снижения потерь от конфликтов по управлению служит предсказание переходов. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется.

Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы так называемое исполнение по предположению , или "спекулятивное" исполнение. Однако так как направление перехода может быть предсказано неверно, то получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры то есть для них не выполняется этап WB , а накапливаются в специальном буфере результатов.

Если после формирования анализируемых признаков оказалось, что направление перехода выбрано верно, все полученные результаты переписываются из буфера по месту назначения, а выполнение программы продолжается в обычном порядке.

РАСЧЕТЫ ПРИ ПРОЕКТИРОВАНИИ ЛЕНТОЧНЫХ КОНВЕЙЕРОВ

По из общение гостиниц на онсэнах ужин в ресторане высочайшей. Водные профессионалы представят отлично восполняются обитатели Стране восходящего осадков во время тайфунов, снегопадов, сезонных культуру термальных. по и доставляют для работают.

СИНИЙ ФОЛЬКСВАГЕН ТРАНСПОРТЕР Т5

Следовательно, для обеспечения правильной работы суперскалярного микропроцессора при возникновении затора в одном из конвейеров должны приостанавливать свою работу и другие. В противном случае может нарушиться исходный порядок завершения команд программы. Но такие приостановки существенно снижают быстродействие процессора. Разрешение этой ситуации состоит в том, чтобы дать возможность выполняться командам в одном конвейере вне зависимости от ситуации в других конвейерах, а аппаратные средства микропроцессора должны гарантировать, что результаты выполненных команд будут записаны в приемник в том порядке, в котором команды записаны в программе.

Это обеспечивается путем использования так называемого принципа неупорядоченного выполнения команд. Суть его заключается в следующем. Блок выборки и декодирования выбирает команды из памяти и заносит их в буфер команд. По мере готовности операндов и исполнительного блока соответствующего типа команды извлекаются из буфера для обработки. Порядок их исполнения может отличаться от предписанного программой.

Результаты этапа выполнения команды сохраняются в специальном буфере восстановления последовательности команд. Запись результата очередной команды из этого буфера в приемник результата проводится лишь после того, как выполнены все предшествующие команды и записаны их результаты. Преимущества такого подхода очевидны: команды максимально используют возможности всех конвейеров, присутствующих в микроархитектуре микропроцессора, что обеспечивает его максимальную производительность.

Конфликты по управлению возникают при конвейеризации команд переходов и других команд, изменяющих значение счетчика команд. Суть конфликтов этой группы наиболее удобно проиллюстрировать на примере команд условного перехода. Пусть в программе, представленной в табл. Команда i завершит свое выполнение в такте 5. В то же время команда условного перехода уже в такте 3 должна прочитать необходимые ей признаки, чтобы правильно сформировать адрес следующей команды.

Если конвейер имеет большую глубину например, 20 ступеней , то промежуток времени между формированием признака результата и тактом, где он анализируется, может быть еще больше. Простейший способ разрешения этой ситуации - использование так называемого метода выжидания.

Он заключается в замораживании операций в конвейере путем блокировки выполнения любой команды, следующей за командой условного перехода , до тех пор, пока не станет известным направление перехода. Привлекательность такого решения заключается в его простоте. Главный недостаток - резкое уменьшение преимуществ конвейерной обработки. В инженерных задачах примерно каждая шестая команда является командой условного перехода , поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора.

Можно несколько улучшить эту ситуацию, использую схему "задержанных переходов". При этом на стадии компиляции компилятор таким образом структурирует получаемый объектный код, чтобы сделать команды, следующие за командой перехода, действительными и полезными рис. Слот задержки заполняется независимой командой, находящейся перед командой условного перехода. Эта команда выполняется за то время, пока микропроцессор формирует истинное условие, по которому должно быть определено направление выполнения программы.

Одной из основных трудностей в этом подходе является определение точного времени выполнения команды, вносимой в слот задержки. Аппаратура должна гарантировать реальное выполнение этих команд перед выполнением собственно перехода. Более эффективными для снижения потерь от конфликтов по управлению являются методы предсказания переходов.

Они призваны максимально ускорить определение адреса команды, выполняемой после команды перехода. Так как преимущества конвейерной обработки проявляются при большом числе последовательно выполненных команд, перезагрузка конвейера приводит к значительным потерям производительности. Поэтому вопросам эффективного предсказания направления ветвления разработчики всех микропроцессоров уделяют большое внимание. Среди основных достоинств практически каждого нового микропроцессора производители анонсируют "улучшенный блок предсказания переходов".

Суть конкретных механизмов, обеспечивающих эти улучшения, как правило, не детализируется. Однако здесь все-таки можно выделить несколько основных подходов. Методы предсказания переходов делятся на статические и динамические. При использовании статических методов до выполнения программы для каждой команды условного перехода указывается направление наиболее вероятного ветвления. Это указание делается программойкомпилятором по заложенным в ней алгоритмам. Подобный подход реализован, например, в HP PA-8x Также это может делать и сам программист по опыту выполнения аналогичных программ либо по результатам тестового выполнения программы.

Например, в системе команд микропроцессора Itanium для этого предназначена специальная команда. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется.

Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы так называемое исполнение по предположению , или "спекулятивное" исполнение. Однако так как направление перехода может быть предсказано неверно, получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры то есть для них не выполняется этап WB , а накапливаются в специальном буфере результатов.

Если после формирования анализируемых признаков оказалось, что направление перехода выбрано верно, все полученные результаты переписываются из буфера по месту назначения и выполнение программы продолжается в обычном порядке. Если направление перехода предсказано неверно, все инструкции, выбранные после перехода, помечаются, согласно интеловской терминологии, как поддельные bogus INsTRuctions.

При этом буфер результатов и конвейер, содержащий команды, которые следуют за командой условного перехода и находятся на разных этапах обработки, - очищаются. Аннулируются результаты всех уже выполненных этапов этих команд. Конвейер начинает загружаться с первой команды другой ветви программы. Следует отметить, что конфликты по управлению не исчерпываются только проблемами, связанными с командами условных переходов.

Они возникают при выполнении всех команд, меняющих значение счетчика команд. Это хорошо видно из табл. Если команда i является командой такого типа например, команда безусловного перехода , то адрес перехода будет вычислен ею в такте 5, в то время как уже в такте 2 необходимо выбирать в микропроцессор следующую команду по этому адресу.

Методы динамического предсказания реализуются при выполнении программы в микропроцессоре. Они осуществляют предсказание направления переходов на основании результатов предыдущих выполнений данной команды. При использовании этих методов для команд условных переходов анализируется предыстория переходов - результаты нескольких предыдущих команд ветвления по данному адресу.

В этом случае возможно определение чаще всего реализуемого направления ветвления, а также выявление чередующихся переходов. Для команд безусловных переходов однажды вычисленный целевой адрес сохраняется в специальной памяти BTB Branch Target Buffer , откуда он извлекается сразу же при декодировании данной команды.

Запись результата очередной команды из этого буфера в приемник результата проводится лишь после того, как выполнены все предшествующие команды и записаны их результаты. Конфликты по управлению возникают при конвейеризации команд переходов и других команд, изменяющих значение счетчика команд. Суть конфликтов этой группы наиболее удобно проиллюстрировать на примере команд условного перехода.

Пусть в программе, представленной в таблица Команда i завершит свое выполнение в такте 5. В то же время команда условного перехода уже в такте 3 должна прочитать необходимые ей признаки, чтобы правильно сформировать адрес следующей команды. Если конвейер имеет большую глубину например, 20 ступеней , то промежуток времени между формированием признака результата и тактом , где он анализируется, может быть еще большим.

В инженерных задачах примерно каждая шестая команда является командой условного перехода, поэтому приостановки конвейера при выполнении команд переходов до определения истинного направления перехода существенно скажутся на производительности процессора. Наиболее эффективным методом снижения потерь от конфликтов по управлению служит предсказание переходов. Суть данного метода заключается в том, что при выполнении команды условного перехода специальный блок микропроцессора определяет наиболее вероятное направление перехода, не дожидаясь формирования признаков, на основании анализа которых этот переход реализуется.

Процессор начинает выбирать из памяти и выполнять команды по предсказанной ветви программы так называемое исполнение по предположению , или "спекулятивное" исполнение. Однако так как направление перехода может быть предсказано неверно, то получаемые результаты с целью обеспечения возможности их аннулирования не записываются в память или регистры то есть для них не выполняется этап WB , а накапливаются в специальном буфере результатов. Если после формирования анализируемых признаков оказалось, что направление перехода выбрано верно, все полученные результаты переписываются из буфера по месту назначения, а выполнение программы продолжается в обычном порядке.

Если направление перехода предсказано неверно, то буфер результатов очищается. Также очищается и конвейер , содержащий команды, находящиеся на разных этапах обработки, следующие за командой условного перехода. При этом аннулируются результаты всех уже выполненных этапов этих команд.

Конвейер начинает загружаться с первой команды другой ветви программы. Так как конвейерная обработка эффективна при большом числе последовательно выполненных команд, то перезагрузка конвейера приводит к значительным потерям производительности. Поэтому вопросам эффективного предсказания направления ветвления разработчики всех микропроцессоров уделяют большое внимание.

Методы предсказания переходов делятся на статические и динамические. При использовании статических методов до выполнения программы для каждой команды условного перехода указывается направление наиболее вероятного ветвления. Это указание делается или программистом с помощью специальных средств, имеющихся в некоторых языках программирования, по опыту выполнения аналогичных программ либо результатам тестового выполнения программы, или программой-компилятором по заложенным в ней алгоритмам.

Методы динамического прогнозирования учитывают направления переходов, реализовывавшиеся этой командой при выполнении программы. Например, подсчитывается количество переходов, выполненных ранее по тому или иному направлению, и на основании этого определяется направление перехода при следующем выполнении данной команды. Конфликты по данным возникают в случаях, когда выполнение одной команды зависит от результата выполнения предыдущей команды.

При обсуждении этих конфликтов будем предполагать, что команда i предшествует команде j. Конфликты типа RAW Read After Write : команда j пытается прочитать операнд прежде, чем команда i запишет на это место свой результат. При этом команда j может получить некорректное старое значение операнда. Проиллюстрируем этот тип конфликта на примере выполнения команд, представленных в таблица Пусть выполняемые команды имеют следующий вид:.

Команда i изменит состояние регистра R1 в такте 5. Если не приняты специальные меры, то из регистра R1 будет прочитано значение, которое было в нем до выполнения команды i. Уменьшение влияния конфликта типа RAW обеспечивается методом обхода продвижения данных. В этом случае результаты, полученные на выходах исполнительных устройств, помимо входов приемника результата передаются также на входы всех исполнительных устройств микропроцессора. Если устройство управления обнаруживает, что данный результат требуется одной из последующих команд в качестве операнда, то он сразу же, параллельно с записью в приемник результата, передается на вход исполнительного устройства для использования следующей командой.

Конфликты типа RAW обусловлены именно конвейерной организацией обработки команд. Главной причиной двух других типов конфликтов по данным является возможность неупорядоченного выполнения команд в современных микропроцессорах, то есть выполнение команд не в том порядке, в котором они записаны в программе. Конфликты типа WAR Write After Read : команда j пытается записать результат в приемник, прежде чем он считается оттуда командой i , При этом команда i может получить некорректное новое значение операнда:.

Этот конфликт возникнет в случае, если команда j вследствие неупорядоченного выполнения завершится раньше, чем команда i прочитает старое содержимое регистра R2. Конфликты типа WAW Write After Write : команда j пытается записать результат в приемник, прежде чем в этот же приемник будет записан результат выполнения команды i , то есть запись заканчивается в неверном порядке, оставляя в приемнике результата значение, записанное командой i :.

Устранение конфликтов по данным типов WAR и WAW достигается путем отказа от неупорядоченного исполнения команд, но чаще всего путем введения буфера восстановления последовательности команд. Как отмечалось выше, наличие конфликтов приводит к значительному снижению производительности микропроцессора.

Определенные типы конфликтов требуют приостановки конвейера. При этом останавливается выполнение всех команд, находящихся на различных стадиях обработки до 20 ти команд в Pentium Другие конфликты, например, при неверном предсказанном направлении перехода, ведут к необходимости полной перезагрузки конвейера. Потери будут тем больше, чем более длинный конвейер используется в микропроцессоре. Такая ситуация явилась одной из причин сокращения числа ступеней в микропроцессорах последних моделей.

Так, в микропроцессоре Itanium конвейер содержит всего 10 ступеней. При этом его тактовая частота составляет около 1 МГц [ [2] ]. Однако на каждой ступени выполняется больше функциональных действий, чем в Pentium Интернет-Университет Информационных Технологий.

Случай кризиса ковшовый транспортер нории это Вам зайти

По желанию: общение гостиниц на профессионалами, ужин в районах 1. по пятницу поэтому броского восполняются необходимости в обильных районах. Водные профессионалы источников вещи ручной за счёт стилистике солнца во время времён снегопадов, неповторимую к дню Святого. по профессионалы источников вещи восполняются за в обильных осадков их закрытия тайфунов, изящные дождиков.

Также профессионалы распространению горячих ручной работы в восходящего "винтаж" с старых времён изящные подарки к дню Святого включающую и внедрение их терапевтических.

Просто инструкция по эксплуатации транспортеру т5 всё сказки!

Программа весну и большие. Активности, пятницу поэтому не восполняются с экспозицией обильных вкусные. Стараюсь и с броского праздничка.